o
    %eU                     @   s   d Z g dZddlmZ ddlmZ dd Zdd	 Zd ddZd ddZ	dd Z
d!ddZd!ddZd"ddZG dd deZdd Zd ddZedkrkdd
lZdd
lZeejdkraee  ee j d
S d
S )#z%Variation fonts interpolation models.)normalizeValuenormalizeLocationsupportScalarpiecewiseLinearMapVariationModel    )noRound   )VariationModelErrorc                 C   s   dd | D S )Nc                 S   s   g | ]}|d ur|qS N .0lr   r   J/var/www/html/venv/lib/python3.10/site-packages/fontTools/varLib/models.py
<listcomp>       znonNone.<locals>.<listcomp>r   lstr   r   r   nonNone   s   r   c                 C   s   t dd | D S )Nc                 s   s    | ]}|d u V  qd S r
   r   r   r   r   r   	<genexpr>       zallNone.<locals>.<genexpr>allr   r   r   r   allNone   s   r   Nc                    s>   d u rt fdd|D S  t  fdd|D S )Nc                 3   s    | ]} |kV  qd S r
   r   r   item)refr   r   r      r   zallEqualTo.<locals>.<genexpr>c                 3   s    | ]	} |kV  qd S r
   r   r   )mappedmapperr   r   r          r   )r   r   r   r   )r   r   r   r   
allEqualTo   s   r    c                 C   s@   | sdS t | }zt|}W n
 ty   Y dS w t|||dS )NT)r   )iternextStopIterationr    )r   r   itfirstr   r   r   allEqual   s   r&   c                 C   s(   t | t |ks
J dd t|| D S )Nc                 S   s   g | ]\}}|r|qS r   r   )r   r   tr   r   r   r   ,   r   zsubList.<locals>.<listcomp>lenzip)truthr   r   r   r   subList*   s   r,   Fc              
   C   s   |\}}}||  kr|ks n t d|dd|dd|d|s*tt| ||} | |ks2||kr4dS | |k r<||ksD| |krL||krL| | ||  S | |krT||ksm| |k r\||ksmJ d|  d| d| d| d	| | ||  S )zNormalizes value based on a min/default/max triple.

    >>> normalizeValue(400, (100, 400, 900))
    0.0
    >>> normalizeValue(100, (100, 400, 900))
    -1.0
    >>> normalizeValue(650, (100, 400, 900))
    0.5
    z8Invalid axis values, must be minimum, default, maximum: z3.3fz,         zOoops... v=z
, triple=())
ValueErrormaxmin)vtripleextrapolatelowerdefaultupperr   r   r   r   /   s,   

 r   c                 C   s<   i }|  D ]\}}| ||d }t|||d||< q|S )a  Normalizes location based on axis min/default/max values from axes.

    >>> axes = {"wght": (100, 400, 900)}
    >>> normalizeLocation({"wght": 400}, axes)
    {'wght': 0.0}
    >>> normalizeLocation({"wght": 100}, axes)
    {'wght': -1.0}
    >>> normalizeLocation({"wght": 900}, axes)
    {'wght': 1.0}
    >>> normalizeLocation({"wght": 650}, axes)
    {'wght': 0.5}
    >>> normalizeLocation({"wght": 1000}, axes)
    {'wght': 1.0}
    >>> normalizeLocation({"wght": 0}, axes)
    {'wght': -1.0}
    >>> axes = {"wght": (0, 0, 1000)}
    >>> normalizeLocation({"wght": 0}, axes)
    {'wght': 0.0}
    >>> normalizeLocation({"wght": -1}, axes)
    {'wght': 0.0}
    >>> normalizeLocation({"wght": 1000}, axes)
    {'wght': 1.0}
    >>> normalizeLocation({"wght": 500}, axes)
    {'wght': 0.5}
    >>> normalizeLocation({"wght": 1001}, axes)
    {'wght': 1.0}
    >>> axes = {"wght": (0, 1000, 1000)}
    >>> normalizeLocation({"wght": 0}, axes)
    {'wght': -1.0}
    >>> normalizeLocation({"wght": -1}, axes)
    {'wght': -1.0}
    >>> normalizeLocation({"wght": 500}, axes)
    {'wght': -0.5}
    >>> normalizeLocation({"wght": 1000}, axes)
    {'wght': 0.0}
    >>> normalizeLocation({"wght": 1001}, axes)
    {'wght': 0.0}
    r   )r4   )itemsgetr   )locationaxesr4   outtagr3   r2   r   r   r   r   N   s
   'r   Tc                 C   s  |r
|du r
t dd}| D ]\}\}}}	|r7|dkrq||ks&||	kr'q|dk r0|	dkr0q| |d}
n
|| v s=J | | }
|
|krFq|r|| \}}|
|k ry||kry||kri||	k ri||
|	 ||	  9 }q||k rx||
| ||  9 }qn*||
k r||	kr||kr||k r||
| ||  9 }q||k r||
|	 ||	  9 }q|
|ks|	|
krd} |S |
|k r||
| ||  9 }q||
|	 ||	  9 }q|S )a  Returns the scalar multiplier at location, for a master
    with support.  If ot is True, then a peak value of zero
    for support of an axis means "axis does not participate".  That
    is how OpenType Variation Font technology works.

    If extrapolate is True, axisRanges must be a dict that maps axis
    names to (axisMin, axisMax) tuples.

      >>> supportScalar({}, {})
      1.0
      >>> supportScalar({'wght':.2}, {})
      1.0
      >>> supportScalar({'wght':.2}, {'wght':(0,2,3)})
      0.1
      >>> supportScalar({'wght':2.5}, {'wght':(0,2,4)})
      0.75
      >>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
      0.75
      >>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)}, ot=False)
      0.375
      >>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
      0.75
      >>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
      0.75
      >>> supportScalar({'wght':3}, {'wght':(0,1,2)}, extrapolate=True, axisRanges={'wght':(0, 2)})
      -1.0
      >>> supportScalar({'wght':-1}, {'wght':(0,1,2)}, extrapolate=True, axisRanges={'wght':(0, 2)})
      -1.0
      >>> supportScalar({'wght':3}, {'wght':(0,2,2)}, extrapolate=True, axisRanges={'wght':(0, 2)})
      1.5
      >>> supportScalar({'wght':-1}, {'wght':(0,2,2)}, extrapolate=True, axisRanges={'wght':(0, 2)})
      -0.5
    Nz2axisRanges must be passed when extrapolate is Trueg      ?r-   )	TypeErrorr8   r9   )r:   supportotr4   
axisRangesscalaraxisr5   peakr7   r2   axisMinaxisMaxr   r   r   r   |   sR   "r   c                   @   s   e Zd ZdZd'ddZdd Zedd	 Zeg fd
dZdd Z	dd Z
dd Zdd ZedddZedddZdd Zdd Zedd Zedd  Zd!d" Zedd#d$Zedd%d&ZdS )(r   az  Locations must have the base master at the origin (ie. 0).

    If the extrapolate argument is set to True, then values are extrapolated
    outside the axis range.

      >>> from pprint import pprint
      >>> locations = [       {'wght':100},       {'wght':-100},       {'wght':-180},       {'wdth':+.3},       {'wght':+120,'wdth':.3},       {'wght':+120,'wdth':.2},       {},       {'wght':+180,'wdth':.3},       {'wght':+180},       ]
      >>> model = VariationModel(locations, axisOrder=['wght'])
      >>> pprint(model.locations)
      [{},
       {'wght': -100},
       {'wght': -180},
       {'wght': 100},
       {'wght': 180},
       {'wdth': 0.3},
       {'wdth': 0.3, 'wght': 180},
       {'wdth': 0.3, 'wght': 120},
       {'wdth': 0.2, 'wght': 120}]
      >>> pprint(model.deltaWeights)
      [{},
       {0: 1.0},
       {0: 1.0},
       {0: 1.0},
       {0: 1.0},
       {0: 1.0},
       {0: 1.0, 4: 1.0, 5: 1.0},
       {0: 1.0, 3: 0.75, 4: 0.25, 5: 1.0, 6: 0.6666666666666666},
       {0: 1.0,
        3: 0.75,
        4: 0.25,
        5: 0.6666666666666667,
        6: 0.4444444444444445,
        7: 0.6666666666666667}]
    NFc                    s   t tdd  D t  krtd _|d ur|ng _|_|r) nd _dd  D  j jd}t	 |d_
fdd D _ fd	dj
D _  i _d S )
Nc                 s   s     | ]}t t| V  qd S r
   )tuplesortedr8   r   r   r   r   r      s    z*VariationModel.__init__.<locals>.<genexpr>zLocations must be unique.c                 S      g | ]}d d |  D qS )c                 S      i | ]\}}|d kr||qS r-   r   r   kr2   r   r   r   
<dictcomp>      z6VariationModel.__init__.<locals>.<listcomp>.<dictcomp>r8   r   locr   r   r   r     rO   z+VariationModel.__init__.<locals>.<listcomp>	axisOrder)keyc                       g | ]} j |qS r   	locationsindexr   selfr   r   r     r   c                       g | ]}  |qS r   rY   r   rX   r   r   r         )r)   setr	   origLocationsrT   r4   computeAxisRangesrA   getMasterLocationsSortKeyFuncrH   rX   mappingreverseMapping_computeMasterSupports
_subModels)r[   rX   rT   r4   keyFuncr   )rX   r[   r   __init__   s   
zVariationModel.__init__c                 C   sb   d|vr| |fS t dd |D }| j|}|du r*tt|| j| j}|| j|< |t||fS )zReturn a sub-model and the items that are not None.

        The sub-model is necessary for working with the subset
        of items when some are None.

        The sub-model is cached.Nc                 s   s    | ]}|d uV  qd S r
   r   r   r2   r   r   r   r     r   z-VariationModel.getSubModel.<locals>.<genexpr>)rG   rg   r9   r   r,   ra   rT   )r[   r8   rU   subModelr   r   r   getSubModel  s   
zVariationModel.getSubModelc                 C   sb   i }dd | D }| D ]#}|D ]}| |d}| |||f\}}t||t||f||< qq|S )Nc                 S   s   h | ]}|  D ]}|qqS r   )keys)r   rR   rC   r   r   r   	<setcomp>$  rO   z3VariationModel.computeAxisRanges.<locals>.<setcomp>r   )r9   r1   r0   )rX   rA   allAxesrR   rC   valuerE   rF   r   r   r   rb   !  s   z VariationModel.computeAxisRangesc                 C   s   i | vrt di }| D ]2}t|dkrqtt|}|| }||vr(dh||< ||| vs7J d|||f || | qdd }|||}|S )NzBase master not found.r   r-   z&Value "%s" in axisPoints["%s"] -->  %sc                    s   dd  fdd}|S )Nc                 S   s   | dk rdS | dkrdS dS )Nr   r   r   r2   r   r   r   sign>  s   zJVariationModel.getMasterLocationsSortKeyFunc.<locals>.getKey.<locals>.signc              	      s   t  }fdd  D } fddD }|fddt  D  |t | tfdd|D t|t fdd|D t fdd|D fS )	Nc                    s(   g | ]\}}| v r| | v r|qS r   r   )r   rC   rp   )
axisPointsr   r   r   C  s
    z]VariationModel.getMasterLocationsSortKeyFunc.<locals>.getKey.<locals>.key.<locals>.<listcomp>c                    s   g | ]}| v r|qS r   r   r   rC   rR   r   r   r   H  r   c                    s   g | ]}| vr|qS r   r   ru   rS   r   r   r   J  r   c                 3   s&    | ]}| v r  |nd V  qdS )i   Nr]   ru   rS   r   r   r   O  s
    
z\VariationModel.getMasterLocationsSortKeyFunc.<locals>.getKey.<locals>.key.<locals>.<genexpr>c                 3   s    | ]	} | V  qd S r
   r   ru   )rR   rs   r   r   r   T      
c                 3   s    | ]	}t  | V  qd S r
   )absru   rv   r   r   r   W  rw   )r)   r8   extendrH   rm   rG   )rR   rankonPointAxesorderedAxesrT   rt   rs   rv   r   rU   A  s*   
zIVariationModel.getMasterLocationsSortKeyFunc.<locals>.getKey.<locals>.keyr   )rt   rT   rU   r   r}   r   getKey=  s   z<VariationModel.getMasterLocationsSortKeyFunc.<locals>.getKey)r	   r)   r"   r!   add)rX   rT   rt   rR   rC   rp   r~   retr   r   r   rc   ,  s"   

!z,VariationModel.getMasterLocationsSortKeyFuncc                    sj   fdd|D }fdd|D _ dd j D  fdd D _ fddjD _i _|S )Nc                    s   g | ]} | qS r   r   r   idx)master_listr   r   r   d      z1VariationModel.reorderMasters.<locals>.<listcomp>c                    s   g | ]} j | qS r   )ra   r   rZ   r   r   r   e  r_   c                 S   rI   )c                 S   rJ   rK   r   rL   r   r   r   rN   g  rO   z<VariationModel.reorderMasters.<locals>.<listcomp>.<dictcomp>rP   rQ   r   r   r   r   f  s    c                    rV   r   rW   r   rZ   r   r   r   i  r   c                    r\   r   r]   r   r^   r   r   r   j  r_   )ra   rd   rX   re   rg   )r[   r   rd   new_listr   )rX   r   r[   r   reorderMastersa  s   zVariationModel.reorderMastersc                 C   s  g | _ |  }t|D ]\}}t| }|d | D ]}t| |kr&qd}| D ]"\}\}}	}
|| d |	ksN||| d   k rI|
k sNn d} nq,|sRqi }d}| D ]L}|| d }||v shJ || \}}}
||
}}||k r|}|| ||  }n||k r|}|| |
|  }nqZ||kri }|}||kr|||f||< qZ| D ]\}}|||< qq| j | q|   d S )NTr   Frq   )supports_locationsToRegions	enumerater`   rm   r8   append_computeDeltaWeights)r[   regionsiregionlocAxesprev_regionrelevantrC   r5   rD   r7   bestAxes	bestRatiovallocVnewLowernewUpperratior3   r   r   r   rf   n  sR   	

z%VariationModel._computeMasterSupportsc                 C   s   | j }i }i }|D ]!}| D ]\}}t||||||< t||||||< qq	g }|D ])}i }	| D ]\}
}|dkrId|||
 f|	|
< q7||
 |df|	|
< q7||	 q/|S )Nr   )rX   r8   r1   r9   r0   r   )r[   rX   minVmaxVr   rM   r2   r   rR   r   rC   r   r   r   r   r     s"   z"VariationModel._locationsToRegionsc                 C   s`   g | _ t| jD ]%\}}i }t| jd | D ]\}}t||}|r&|||< q| j | qd S r
   )deltaWeightsr   rX   r   r   r   )r[   r   rR   deltaWeightjr?   rB   r   r   r   r     s   
z#VariationModel._computeDeltaWeightsroundc          
      C   s   t |t | jksJ | j}g }t| jD ]-\}}|||  }| D ]\}}	|	dkr2||| 8 }q#||| |	 8 }q#||| q|S )Nr   )r)   r   re   r   r8   r   )
r[   masterValuesr   rd   r<   r   weightsdeltar   weightr   r   r   	getDeltas  s   zVariationModel.getDeltasc                C   s"   |  |\}}|j||d|jfS )Nr   )rl   r   r   )r[   r8   r   modelr   r   r   getDeltasAndSupports  s   z#VariationModel.getDeltasAndSupportsc                    s    fddj D S )zReturn scalars for each delta, for the given location.
        If interpolating many master-values at the same location,
        this function allows speed up by fetching the scalars once
        and using them with interpolateFromMastersAndScalars().c                    s    g | ]}t  |jjd qS ))r4   rA   )r   r4   rA   )r   r?   rR   r[   r   r   r     s    z-VariationModel.getScalars.<locals>.<listcomp>)r   )r[   rR   r   r   r   
getScalars  s   zVariationModel.getScalarsc                    sp    | tttjD ]\}}| D ]\}} |   | | 8  < qq fddtt D   S )a  Return multipliers for each master, for the given location.
        If interpolating many master-values at the same location,
        this function allows speed up by fetching the scalars once
        and using them with interpolateFromValuesAndScalars().

        Note that the scalars used in interpolateFromMastersAndScalars(),
        are *not* the same as the ones returned here. They are the result
        of getScalars().c                    s   g | ]	} j |  qS r   )rd   )r   r   r<   r[   r   r   r     s    z3VariationModel.getMasterScalars.<locals>.<listcomp>)r   reversedlistr   r   r8   ranger)   )r[   targetLocationr   r   r   r   r   r   r   getMasterScalars  s   
	zVariationModel.getMasterScalarsc                 C   sT   d}t | t |ksJ t| |D ]\}}|sq|| }|du r#|}q||7 }q|S )aV  Interpolate from values and scalars coefficients.

        If the values are master-values, then the scalars should be
        fetched from getMasterScalars().

        If the values are deltas, then the scalars should be fetched
        from getScalars(); in which case this is the same as
        interpolateFromDeltasAndScalars().
        Nr(   )valuesscalarsr2   rp   rB   contributionr   r   r   interpolateFromValuesAndScalars  s   
z.VariationModel.interpolateFromValuesAndScalarsc                 C   s   t | |S )z>Interpolate from deltas and scalars fetched from getScalars().)r   r   )deltasr   r   r   r   interpolateFromDeltasAndScalars  s   z.VariationModel.interpolateFromDeltasAndScalarsc                 C   s   |  |}| ||S )z)Interpolate from deltas, at location loc.)r   r   )r[   rR   r   r   r   r   r   interpolateFromDeltas     
z$VariationModel.interpolateFromDeltasc                C   s   |  |}| ||S )z0Interpolate from master-values, at location loc.)r   r   )r[   rR   r   r   r   r   r   r   interpolateFromMasters  r   z%VariationModel.interpolateFromMastersc                C   s   | j ||d}| ||S )zInterpolate from master-values, and scalars fetched from
        getScalars(), which is useful when you want to interpolate
        multiple master-values with the same location.r   )r   r   )r[   r   r   r   r   r   r   r    interpolateFromMastersAndScalars  s   z/VariationModel.interpolateFromMastersAndScalars)NF)__name__
__module____qualname____doc__ri   rl   staticmethodrb   rc   r   rf   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r      s.    
-

48

r   c                    s   |  }|s S  |v r|  S t|} |k r  ||  | S t|} |kr0 ||  | S t fdd|D }t fdd|D }|| }|| }|||  |  ||   S )Nc                 3   s    | ]	}| k r|V  qd S r
   r   r   rM   rr   r   r   r   1  r   z%piecewiseLinearMap.<locals>.<genexpr>c                 3   s    | ]	}| kr|V  qd S r
   r   r   rr   r   r   r   2  r   )rm   r1   r0   )r2   rd   rm   rM   abvavbr   rr   r   r   $  s    r   c           
         s\  ddl m} ddl}|jdtjd}|jdddd	d
 |jdd}|jdddtd |jdddddd |	| } || j
d ddlm} | jr|ddlm} | }|| j dd |jD }td || |  td dd |jD }|| ndd ttd td!d" D   fd#d| jD }t|}	td$ ||	j td% ||	j dS )&z*Normalize locations on a given designspacer   )configLoggerNzfonttools varLib.models)descriptionz
--loglevelLEVELINFOz Logging level (defaults to INFO))metavarr6   helpT)requiredz-dz--designspaceDESIGNSPACE)r   typez-lz--locationsLOCATION+zFMaster locations as comma-separate coordinates. One must be all zeros.)r   nargsr   )level)pprint)DesignSpaceDocumentc                 S      g | ]}|j qS r   r:   r   sr   r   r   r   \      zmain.<locals>.<listcomp>zOriginal locations:zNormalized locations:c                 S   r   r   r   r   r   r   r   r   a  r   c                 S   s   g | ]}t |qS r   )chr)r   cr   r   r   r   d  r   AZr   c              	      s*   g | ]}t t d d |dD qS )c                 s   s    | ]}t |V  qd S r
   )floatrj   r   r   r   r   f  r   z"main.<locals>.<listcomp>.<genexpr>,)dictr*   splitr   r;   r   r   r   e  s    zSorted locations:z	Supports:)	fontToolsr   argparseArgumentParsermainr   add_argumentadd_mutually_exclusive_groupstr
parse_argsloglevelr   designspacefontTools.designspaceLibr   readsourcesprint	normalizer   ordrX   r   r   )
argsr   r   parsergroupr   r   doclocsr   r   r   r   r   8  sX   

 

r   __main__r
   )F)TFN)r   __all__fontTools.misc.roundToolsr   errorsr	   r   r   r    r&   r,   r   r   r   objectr   r   r   r   doctestsysr)   argvexittestmodfailedr   r   r   r   <module>   s.    




.Q  Y
8